返回目录

Two Equations, Two Unknowns - I

Can't listen to audio right now?打印标题。

成绩单

两个方程有两个变量。到目前为止在代数方程的研究中,我们看了解决 例如,单个方程只有一个变量,例如2x + 7 = 15.如果在等式中有多个变量,会发生什么? Suppose we had something like 2x + 3y = 15. Now, what would it mean for someone to come and tell us, solve this equation?

How would we find values that work in this equation? Well certainly, one possible value, if x = 0, then y could = 5. 所以,这将是一个解决方案。其他是,如果x = 3和y = 3,x = 6并且 y = 1,那些也是使其工作的值。课程没有限制其他变量必须是积极的。

这样的其他解决方案包括x = 9,y = -1或x = -3和y =正7。 And as you can imagine, we could make x more and more negative and make y more and more positive or vice versa. 所以我们可以获得这一种类的一些解决方案。此外,没有限制变量必须是整数。

So other solutions include things like x = 7 and a half, y = 0 or x = 4 and y = 2 and a third. 所以在这个页面上,通知我们有一个,二,三,四,五,六,七个解决方案。 And it's certainly clear we could get many, many more. In fact, one equation with two variables typically would have an infinite 解决方案数量。

Notice all those solutions if plotted on an x-y graph would lie on a straight line. So all, the seven solutions that we mentioned, 那些是这个图上的七个点,它们都呈直线。现在,由于我们将稍后讨论,在坐标几何模块中, 只有x和y的任何单个方程都不是升高到电源或分数的变量,可以在x-y平面中的一行表示。

所以现在你不需要担心绘制那些。你不需要担心你如何找到线路的斜率 any of that. All you need to do, is just have that idea, just that association, that an equation with x and y is represented by a line. That's all you need to know for this discussion here.

所以第一个大想法是,没有人可以要求你用两个变量解决一个方程式,因为它会有无限数量的解决方案。 一行通过无限数量的点,并且每一个点中的每一个点都是解决方案。 因此,没有任何人可以合法地要求您解决,因为他们会要求您立即解决所有人的无限内容。

现在假设我们有两个等式,每个方程都有两个变量。这被称为一个方程系统。 The values of x and y must satisfy both equations simultaneously. Well this is interesting. 如果每个等式都是一行,那么这是一个有意义的是那些两条线相交的唯一点是满足两个方程的单点。

所以,如果你选择一个随机线并选择另一个随机线,那么他们将在某处交叉很好。 他们相交于一点,这一个效果t would be the solution. So algebraically, when we're finding that solution, 我们正在做的是在几何上发现它们相交的点。如此大的想法2,如果我们有两个方程式的两个有两个未知的系统, we generally can solve for unique values of x and y.

How do we solve a system of equations with these values? There are two strategies. 一个是替代,另一个被称为消除,一些来源也称之为线性组合。 我将呼叫他们替代和消除。这两种方法的目标是减少两个等式 - 两个未知数 情况到一个不知名的情况,这是我们已经知道如何找到解决方案的情况。

So, what we're doing, and this is often true of mathematics, we're turning a problem we don't know how to solve into a problem we do know how to solve. 这对数学非常典型。所以,替代方法,在这种方法中, 我们将首先解决一个等式,一个方程,对于其中一个变量。在这个等式中,我们将在等式的一侧自行获得一个变量。

因此,我给出了瞬间前的那些等式,其中一个等式是x + 2y = 11.这是一个等式,它特别容易自行获得x。 All I'm gonna do is subtract 2y from both sides, and I get x = 11- 2y. So hold on to that for a second, x = 11- 2y. Now let's look at the other equation. We can replace the x in the other equation with the expression that x equals.

Because x equals 11- 2y, it means that wherever there's an x, we can remove the x and replace it by the thing that it equals. 所以,这是其他方程式。我们只是再次写下相同的等式, 但是我们将用11-2Y取代x。现在我们有一个与y的单个方程式。

所以现在我们只是用我们的普通解决。我们会分发。 We'll combine the like terms. We'll subtract the 22 from both sides. We get -y = -7. Multiply by -1, we get y = 7.

So now we have solved for one of the two values, we solved for y. We still have to solve for x. 现在,我们将此值插回为x解决的等式。所以我们有,x = 11-2Y。 Well now we know that y = 7. So we'll just plug that in, 11- 14 is -3.

因此,点x = -3,y =正7,即解决方案。请注意,替代方法在其中一个时最有用 等式变量之一的系数等于正1或负1.如果所有X和X的系数)和 y in the two equations are unequal to positive or negative 1, then solving for any variable will create fractions which makes the solution more cumbersome.

例如,假设我们将其作为我们的系统。假设我们尝试解决X的第一个等式。 好的,我们可以从两侧减去5Y,然后我们分开了4.好的,好的,我们进入分数,所以 this would not be fun to substitute. Yes, mathematically we could solve the equation this way.

We'd have to wade through a bunch of fractions, but we prefer not to have to do it. 在替代方便不方便的系统中,我们会使用消除。我们将涵盖下一课中的消除方法。 在Summery中,一个方程系统,具有两个变量的两个方程,通常具有单个唯一解决方案。

而且,这将是两条线路相交的地方。这就是我们发现的那一点。 我们可以用替代或消除来解决。当其中一个变量具有加号或者的系数时,替换最佳 minus 1. And again, in the next lesson, we'll talk about the elimination.

阅读完整成绩单